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Abstract. The problem of generating ground states of a quenched random Ising spin system 
with variable concentration of mixed-neighbour exchange couplings (Jii 5 0) on a planar 
lattice (frustration model) is mapped into the problem of the Chinese postman which has 
been solved by a polynomial algorithm known as Edmond’s algorithm. This algorithm is 
transposed and applied to the frustration problem. Not only is one particular ground state 
generated, but a post-optimal algorithm is established which gives the map of the rigid 
bonds and solidary spins (bonds in the same state for all ground states). This study of the 
rigidity on a square lattice reveals three distinct regimes by varying x ,  the concentration of 
negative bonds: 

(1) a low-concentration regime where the ground states are rigid and ferromagnetic; 
(2) an intermediate regime 0.1 =z x < 0.15 where the rigid ground states are structured in 

(3) a high-concentration regime where the clustering of solidary spins is finite and 

These defects characterise the phase transitions between the ferromagnetic, the random 

an antiphase domain separated by magnetic walls; 

separated by fracture lines. 

antiphase and the paramagnetic states which occur with increasing x. 

1. Introduction 

It is now accepted that the spin glass problem is of great difficulty and cannot be directly 
transposed from methods which were successful in the study of homogeneous models. 
As an example we mention here the great difficulty of providing ground states of spin 
glass systems, while these states are obtained simply in homogeneous models as well as 
diluted ferromagnetic models of percolation. This step in the progress of knowledge of 
this problem is crucial for the following reasons: the controversy between those who 
believe that the low-temperature properties are purely metastable, and the supporters 
of a phase transition towards a cooperative frozen state of spins, can evolve if one learns 
that the ground state does not contain any long-range correlation (as is shown in this 
paper for the model *J in two dimensions at x = 0.5; see below). Also, the analytical 
calculations are of great complexity at low temperatures and, except for the solution of 
Parisi (1979) of the infinite-range model, very few results have been firmly settled. The 
description of exact ground states as presented in this paper could provide the 
inspiration for a correct solution. 

0305-4470/82/020673 + 27$02.00 @ 1982 The Institute of Physics 673 
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The model i J  is defined by the Hamiltonian 

H = - J,,a;O; 
(1.1) 

where a,, ml = *1 are Ising spins on a square lattice, and Jll is the random interaction 
between nearest-neighbour spins with probability x for J,, = -J and 1 - x for JII = J. It 
has been shown (Binder 1980) that this model shows most of the features of more 
realistic models like that with the gaussian distribution of Ji,, except the residual 
entropy S(0) which is very important in the i J  model. This corresponds to a huge 
degeneracy of the ground states (typically 1013 for a 20 x 20 spin at x = 0.5); the 
corresponding low-energy excited states of the gaussian model are manifest up to a 
temperature T 2: 0.3 in J units. But it is hard to perform an exact thermal average over 
these low-energy excited states, since the enumeration of these states must be exhaus- 
tive; this will be done here using a polynomial algorithm exploiting entirely the 
symmetry of the *J model. Then, instead of deploring this huge degeneracy of ground 
states, we think that the thermodynamic variables (correctly averaged over all ground 
states) are very representative of low-temperature properties of Ising spin glass 
models. 

The failure of the Monte Carlo relaxation method to provide exact ground states is 
now well established (Bray and Moore 1977, Kirkpatrick 1977). It turns out that this 
relaxation process traps the system into low-energy metastable states of very long 
lifetime separated from the ground state by potential barriers (Ramma1 et a1 1979). The 
other attempts to construct exact ground states are initiated by the analysis of spin 
configurations in terms of frustrated plaquettes (squares of spins with an odd number of 
negative J ,  on the perimeter) and strings of violated bonds (Toulouse 1977). The rules 
resulting from the latter methods have been applied by hand (Vannimenus and 
Toulouse 1977, Vannimenus et a1 1979) on samples of finite size. The first purely 
computational method (Bieche et af  1980) used a matching method of graph theory 
known as the Edmonds method. The present study is very akin to this matching 
method: however it works on the graph of spins, bond variables and frustrated contours. 
This new formulation is much more transparent than the previous one and some 
analogy with defect theory is suggested. In §2,  the ground-state problem of the 
frustration model is formulated as the Chinese postman's problem, for which a dual 
problem is built. This dual problem uses frustrated contours which appear as the 
natural conjugates of the violated bonds. The principle of the solution is sketched in § 3 
as well as the close analogy between the frustration problem and dislocation theory. 
The usefulness of this new version of this algorithm resides in the post-optimality 
procedure which produces the rigidity of bonds for all the ground states (a rigid bond is 
by definition an edge which keeps its two spins in the same relative orientation in all 
ground states. The spins are said to be solidary). This property is crucial for discussing 
the magnetic correlation between spins. Actually, spins which belong to the same 
cluster of rigid bonds are perfectly correlated. Conversely, spins sitting in distinct 
clusters are less correlated. Any long-range order will be supported by an infinite 
(percolating) cluster of rigid bonds. 

Section 4 is more technical: it is devoted to the primal algorithm and the strategy for 
producing optimal solutions. It is shown that any transient solution is reached by 
reversing a set of spins of any shape. It is the non-local character of the transition which 
overcomes the potential barrier present in the system even in the low-energy excited 
state. 
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The numerical experimentation is presented in 5 S .  The boundary conditions are 
not unimportant in the present context; actually two types of boundary conditions are 
produced by the algorithm-periodic and antiperiodic-for the optimality. This addi- 
tional degree of freedom plays an important role for the discovery of the so-called 
antiphase state. 

The results are presented in 0 6. An effort of visualisation of the morphology of the 
ground states has been made. It is shown how the rigidity of the ferromagnetic ground 
state is ‘pulverised’ by adding negative bonds. When the content of frustrated plaquet- 
tes is increased fracture lines occur. A threshold for disappearance of rigidity is located 
at x - 0.15. The structures of percolation clusters or finite clusters are indeed very 
different from those in the uncorrelated percolation problem, since the threshold is 
found at the concentration 0.7 of rigid bonds. At intermediate concentrations of 
negative bonds, 0.1 < x < 0.15, a systematic choice of antiperiodic boundary conditions 
indicates the presence of magnetic walls in rigid ground states. The occurrence of thesc 
magnetic defects indicates here the existence of a new phase called the random 
antiphase state with zero magnetisation. It must be noticed that this state is highly 
correlated: a correlation function of the staggered magnetisation of the type 
(S(0) S(R))& where the averaging over all ground states is indicated by the brackets, 
has its maximum value inside the percolating cluster of rigid bonds. 

In 0 7, the main results of this study are summarised and a clear distinction between 
the two types of defects is put forward. Possible generalisations to gaussian models are 
also evoked. 

2. The frustration model as the Chinese postman’s problem 

This section is devoted to the relationship between the frustration model and the 
Chinese postman’s problem. After recalling some important definitions, we give the 
general formulation of the frustration problem in terms of finding a minimum weighted 
cut in a particular graph. For planar graphs without isthmus, there is a one-to-one 
correspondence between cuts and quasi-cycles of the dual graph (a quasi-cycle is an 
edge set such that each node has even degree). This property permits the reduction of 
the frustration problem to that of finding a minimum weighted quasi-cycle, which can be 
solved in polynomial time. Consequently, frustrated contours appear as the only 
pertinent variables in the frustration model and emerge naturally from our new 
formulation. 

2.1. The Chinese postman’s problem (Mei-Ko Kwan 1962) 

A postman delivers maiI along a set of streets represented by the edges of a connected 
graph G. He must go along each street at least once, in either direction. He starts at the 
post office (one of the nodes of G) and must return to this starting point. What route 
enables the postman to walk the shortest possible distance? 

The problem is to find a minimum length closed path, with repeated edges if 
necessary, which contains each arc of a given network (figure 1). 

Assume the network connected, and all edge weights (here lengths) non-negative. If 
the degree of each node is even, then the network is Eulerian and the solution is simply 
an Euler path. Such a path, which contains each edge exactly once, is certainly as short 
as any closed path which contains each edge at least once. 
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Post of f ice  

Figure 1. The Chinese postman’s problem. 

It is easy to see that the occurrence of odd-degree nodes (network G not Eulerian) 
implies repeated edges in the postman’s walk (there is no Eulerian path). These 
observations enable us to formulate the Chinese postman’s problem as follows. 

Let G = (V, E) be a given connected graph, with Cii > 0 as the weight of the edge 
( i j )  E E. V‘ denotes the set of nodes having odd degree, V” = V - V’. The problem of 
the Chinese postman on the weighted graph G can be formulated as the following 
integer linear programming problem: 

minimise C , , x , ,  subject to 
l I , ) E E  

(C2) 

(C3) 

(C4) xij E {0,1) for each ( i j )  E E. 

The value 1 of xi, indicates the repetition of the edge (it  j )  in the weight function. This 
problem, dubbed ‘Chinese’ by Edmonds in recognition of the mathematician Mei-Ko 
Kwan who proposed it, was solved by Edmonds by a procedure which employs the 
matching algorithm (Edmonds 1965, Edmonds and Johnson 1973). 

1 x,, = 1 (mod 2) 

1 x,, = 0 (mod 2) 

for each i E V’, 

for each i E V”, 

I 

/ 

2.2. The ground-state problem in the frustration model of a spin glass 

In this model, on a graph G = (V, E), with each mode i E V, there is associated a single 
variable ui, with the possible values *1 indicating spin orientations (Ising model), and 
with each edge ( i j )  E E there is associated a weight Jij E R  indicating the interaction 
between spins. The ground state ( T  = 0 K) is found by minimising the corresponding 
energy of spins, 

where {J, , }  is given, i.e. maximising Ji,uiu, subject to U, = - 1, 1 I 
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In the following subsections, we establish the equivalence between the two prob- 
lems, as well as the correspondence dictionary. 

2.3. The ground-state problem, as a minimum weighted cut problem 

For a given spin configuration (an assignment of values to variables ai), we denote by U 
the set of spins up (ai = +l), and by D that of spins down (ai = -1). 
Let 

Obviously, we have 
-H = W'+ W - -  W'-=K -2W+- 

where K = W'+ W - +  W'- is a constant (i.e. (El if Jij = *l). Therefore, minimising H 
is equivalent to minimising W+-.  This problem is known in graph theory terminology 
as the problem of finding a minimum weighted cut. In the frustration problem a cut is 
given simply by a partition of spins (U, V )  (see figure 2). It is precisely the set of edges 
which connects nodes of U with nodes of D. 

FIgre 2. The wavy lines represent the cut, the broken lines the quasi-cycle. 

2.4. The two-dimensional case or planar graph 

In the following, we assume the planarity of the graph G = ( V ,  E) and we denote by G* 
its dual graph. To each cut (U, D )  corresponds a partial graph of G*, such that each 
node has even degree: this partial graph is by construction the quasi-cycle associated 
with the considered cut (see figure 2). In Orlova and Dorfman (1972) it is shown that for 
planar graphs G without isthmus, there is a one-to-one correspondence between cuts 
and quasi-cycles of the dual graph G*. Then, for a planar graph, the problem of finding 
a minimum weighted cut is equivalent to that of finding a minimum weighted quasi- 
cycle in the dual graph (the latter problem may be solved in polynomial time (Edmonds 
1965)). 
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For clearness we adopt here the frustration terminology and limit our discussion to 
planar frustrated graphs. 

Definitions 

For a quasi-cycle Q, let an edge ( i j )  be violated if Jij > 0 and ( i j )  belongs to Q, or if 
Jii < 0 and ( i j )  does not belong to 0. An edge will not be violated otherwise. 

Let 

x i j ( Q )  = 1 if (ij) is violated, 

= 0 otherwise. 

In order to show the relationship with the Chinese postman’s problem we shall 
establish conditions (C2), (C3) and (Cl). 

(C.1, (C3) 
It is easy to see that for a quasi-cycle there is an odd number of violated edges adjacent 
to odd nodes and an even number adjacent to even nodes. Thus we recover (C2), (C3) 
where V’ is the set of frustrated plaquettes (nodes of G* corresponding to elementary 
frustrated cyclest). In this way, the set of frustrated plaquettes corresponds to odd 
nodes in the Chinese postman’s problem, and frustrated edges correspond to repeated 
arcs in its walk. 

Objective function ( C l )  

In order to complete the proof, we denote by W ( Q )  the total weight of the quasi-cycle 
Q, and 

u ( Q )  E H  = W(Q) - W ( E  - Q) = 2 W ( Q ) -  W ( E )  

where W ( E )  is the total weight of edges. It is easy to see the following identity: 

u ( Q ) =  Jij- C IJijla 
(ij)violated (ij) non-violated 

In fact, if Jii>O and ( i j )  violated, then ( i j ) E  Q and its weight in u ( Q )  occurs as lJijl. 

The same argument holds for non-violated edges. Finally, we have 
If Jij < 0 and ( i j )  violated, then ( i j )  & Q and its weight in W ( Q )  occurs as -Jii = IJli/. 

whereK= 1 JlP 
( i j )eE 

u ( Q ) = K + 2  C IJijI 
(ij) violated 

Therefore, the minimum of H is given by that of lJijlxii, and we recover (Cl). This 
proof achieves the correspondence between the two problems mentioned in the 
introduction of this section (see table 1). 

NB The correspondence: frustration problem c, minimum weighted cut holds in 
any graph. The planarity property is evoked only in the correspondence: cut c* quasi- 
cycle. 

A cycle C is said to be frustrated if ~, i i ,E,sgn(Jii)  = -1 ,  and not frustrated otherwise 
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Table 1. Correspondence dictionary: Chinese postman-frustration. 

Chinese postman’s problem Frustration problem 

Odd nodes Frustrated plaquettes 
Repeated edges in the walk 
Additional ‘cost’ Frustration energy 

Frustrated edges 

2.5. Reformulation of frustration problem 

Using the equivalence shown above, between the frustration model and the Chinese 
postman’s problem, we are in a position to reformulate the frustration problem in more 
general terms. Let H = (X, F), a planar graph with a weighting function w : F -+ R. For 
Q c_ F, we denote by u ( Q )  the set of violated edges; 

F+ ={e EF, we >o}, F - =  {e E F, we CO}. 

A node U EX is said to be odd (even) if and only if IS(u) nF-1 is odd (even). Here the 
cardinality S ( u )  denotes the set of edges in F, adjacent to the node U E V (IAI means 
cardinal of A). It is straightforward to show the following properties. 
(i) Q c F is a quasi-cycle if and only if 

1 (mod 2) if U E X is odd, 
mod 2) if U E X is even. b(Q) n S(u)l= { ( 

(ii) For a quasi-cycle Q, we have 

(In relation to (2.4), X represents the set of nodes in the dual graph, and we corresponds 
to the interaction Jib) 

Therefore, in order to minimise the total weight of the quasi-cycle Q, we need to 
minimise X e s u ( ~ )  IweI. Thus, if we denote 

1 ifeEu(Q), 
.e=[  0 ife&u(Q), 

the ground-state problem in the frustration model can be formulated as the following 
integer linear programming problem (i.e. Chinese postman’s): minimise LF ne I we 1 
subject to 

xc = 1 (mod 2) for i odd, 
e e 8 ( i )  

1 xe = 0 (mod 2) for i even, x e  E{O, 1). 
e e W )  

This linear problem can be solved in polynomial time, as shown by Edmonds and 
Johnson (1973) (see !i 3). The main result of these authors is to rule out the integrality 
condition xe E (0,1} by adding new linear constraints on the set of odd subsets of H. An 
odd subset of H is simply a subset of X containing an odd number of odd nodes and any 
number of even nodes; such a subset is denoted by S. 
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Thus, the integer linear program above may be stated in the following way: 

minimise I w,Is, subject to 
e 

xe a 1 for any odd subset S, x,  z=oy 
(Po)[ 

eas(S) 

where S(S) is the set of edges having exactly one end in S. 
By dropping the integrality requirement, x,  E (0, l}y and adding the linear con- 

straints on subsets s, we obtain a linear program whose feasible solutions include all 
feasible solutions of the original one. In particular, if this linear program has an 
integer-valued optimal solution, then that solution is optimal for the original one. 

2.6. Signification of the program (Po) 

In order to understand the signification of the program (Po) it is more useful to use the 
frustration terminology, which gives a transparent and intuitive picture (figure 3). 

I- 

J A A A 

c 

Figure 3. The * represent the frustrated plaquettes. C = S(S) is a frustrated contour. 

In the planar graph of spins, the set of odd nodes of its dual are nothing other than 
the set of frustrated plaquettes. An odd subset S is nothing other than a set of 
plaquettes having an odd number of frustrated plaquettes; finally, S(S) = C are simply 
the frustrated contours, delimiting naturally this odd subset with an odd number of 
frustrated plaquettes. 

Armed with this interpretation, we obtain the main result of this section, by restating 
the ground-state problem of the frustration model as follows: 

minimise lJijlxij subject to 
( i j ) E E  

x i j  3 1 for any frustrated contour C, 

xij 3 0. 

The primal linear program (P) gives the following intuitive picture: a constraint on 
frustrated contours, C, is the simple property of the occurrence of at least one frustrated 
edge in a frustrated contour. This property emerges naturally from the statement above 
and represents the cost of replacing the integrality condition (xi ,  E (0, 1)) by xd L 0. 

The program (P) evokes only the graph of spins, without any variables coming from 
the dual one. In this way our new formulation is more transparent than that used 
previously (Bieche et a1 1980). The main feature to be noted here is the natural way in 
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which the set of frustrated contours emerges. In fact, this set contains the whole 
pertinent information of the frustration as well as the natural variables of the problem. 

3. Solution of the frustration problem by duality: rigidity 

In this section we shall describe the dual program of (P), and we shall give its physical 
content. In particular, we show the close analogy between dislocations and frustrated 
plaquettes, as well as frustrated contours and Volterra circuits in the defects theory of 
crystals. After summarising the main steps of the primal-dual solution, we shall 
demonstrate the usefulness of the algorithm as a post-optimality procedure, giving the 
rigidity of ground states. A more detailed description of the technical points will be 
given in the Appendix. 

3.1. Dual problem (D)  

In order to solve the program (P), it is usual in linear programming to introduce the dual 
program (D). (P) is called the ‘primal’ problem and (D) is its ‘dual’. In the program (P), 
the xij are the unknown variables, and they are associated with the set of edges. In 
contrast, in the program (D), the unknown variables y ,  are associated with frustrated 
contours C = S(S). 

The dual program (D) may be stated in the following way: 

maximise y ,  subject to 

(D)[ { S / ( i j ) E  6 (S) i = C frustrated} s Cij = IJ~~J for any ( i j )  E E, (D1) 

ys  30. (D2) 
The correspondence between (P) and (D) is very clear: { y,}  is the analogue of 

Lagrange multipliers associated with (Pl) and D1 is associated with the xii. 
The variables y ,  conjugated to the xij represent a repartition of frustration energy 

(cost) among frustrated contours (see below). The values taken by the y, are dictated in 
general by those of the Jii. For instance, if Jij = *l, then the y ,  can belong to (0, a, 1) for 
all S. More generally, if Cij = IJij) are integers, the y ,  are half-integers ( y ,  E k). In the 
general case, to real Cij correspond real y,. 

3.2. Primal-dual solution 

A feasible solution of (D), i.e. a repartition { y }  satisfying (Dl) and (D2), gives a lower 
bound for the frustration energy 

C ~s ClJijIxij- 

The best lower bound, max L y,, yields the minimum of the frustration energy 

min I ~ ~ ~ l x ~ ~  

Therefore, if X = {xij} is a feasible solution of (P), X is an optimal one if there exists a 
feasible solution {y} of (D) such that (see figure 4) 

c Ys = c IJi,Ixii. 
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Flgure 4. The straight bonds represent J, ,  = + 1 and the wavy bonds I, ,  = . I  The violated 
edges correspond to the double line The wavy lines indicate the contours S with 1, = 1 

The following 'complementary slackness' conditions give an optimum criterion for a 
pair (X, Y )  of feasible solutions of (P) and (D): 

( i )  i f  x,, > O ,  then Zcs :,,/ ) G b t S , )  y ,  = C,, =lJlll, S is a odd subset; 
(ii) if y ,  > O ,  then Z,I I )EC~d,S) x,, = 1. 

This criterion is the main point in the algorithm summarised below. On the other hand, 
we can extract immediately from (i)-(ii) some results about the rigidity of ground states. 
In  fact: 

(a) If the condition ~ c . s ~ l , , , ~ ~ , s , l  y' < lJ,/l is satisfied, then the edge Cij) cannot be 
frustrated in any optimal solution (i.e. any ground state). ( i j )  is called in this case a rigid 
bond. 

(b) If the condition yI > O  is satisfied, then the frustrated contour C = S ( S )  has 
exactly one frustrated edge in the whole set of ground states. 

These two remarks are the starting point of the rigidity analysis given below. 

3.3. Analogy wilh dislocations 

As stated above, the variables x,, E (0, I}  indicate the repartition of frustrated edges in 
the graph of spins. On the other hand, the variables y ,  represent a kind of 'line tension' 
of frustrated contours C = S(S) arising from the energy excess due to frustration. This 
observation permits us to draw a simple analogy between the frustration problem and 
dislocation theory in crystals. 

We can see such a correspondence as follows. A frustrated plaquette is nothing 
other than the dislocation core, and a frustrated contour is simply the counterpart of a 
Volterra circuit (see figure 5 ) .  

The 'line tension' y 1  represents the self-energy of a dislocation, and the analogue of 
the Burgers' vector is the total charge inside the frustrated contour C. The main 
difference between the two problems is the composition law (addition) of topological 
charges: Z 2  = 2 / 2 2  in the frustration problem instead of Z for dislocations. 

This picture gives a new insight to the old naive idea representing a glass as a 
material with a high density of dislocations. In o u r  case, we have a set of 'magnetic 
dislocations'. 

3.4. Hierarchical structure of frustrated contours 

Instead of using all odd subsets S, we can show that connected odd subsets of S are 
sufficient for our investigations. Moreover, we can limit ourselves to a family having the 
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( 0 1  fb l  

w e  5. Analogy frustrationdislccdtion. (a )  Odd subset (circuit) with odd number of 
charges. ( b )  Even subset (circuit) with even number of charges. 

following property: for any pair S1, S2 of odd subsets we have: either S1 c S2 
(respectively S2 c S1) (embedding properties) or S1 n S2 = 0. 

In this way, we have a hierarchical structure of frustrated contours S, having y s  > 0 
(figure 6) . The physical consequence of this structure is not clear to the authors. 

w e  6. Hierarchical structure of frustrated contours. 

3.5. Rigidity analysis 

In some cases where J,, = *1 for instance there is no unique optimal solution of (P). 
Instead of using this degeneracy property of ground states, it is more relevant to use the 
concept of solidary spins to study the correlations between spins. 

A packet of solidary spins is defined as a group of spins that keep the same relative 
orientation in all ground states. Such packets provide a measurement of the rigidity 
property and can be characterised by the set of rigid bonds (in contrast to liuing bonds). 

A rigid bond is by definition an edge keeping its two spins in the same relative 
orientation in all ground states. Such a bond may be violated or not for all the ground 
states. A liuing bond is by definition a non-rigid bond (violated in some ground states, 
and non-violated in others). 

When we compare two ground states it appears clearly that one (or more) packet of 
solidary spins is flipped as a whole. In this way the rigidity analysis yields information 
about the correlations between spins. 
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The naive way to study rigidity consists in a naive enumeration of ground states. 
Such a method becomes impracticable when the number of ground states is relatively 
high (in the frustration model, with J,, = f 1, such a number becomes of the order of 10’’ 
for samples of size 15 x 15). 

Instead, the Chinese postman’s algorithm permits a non-enumerative method 
giving a complete characterisation of the rigidity in a computation time proportional to 
a power law of the total number of spins. 

Without loss of generality we briefly describe this method in the case J,, = f 1. To 
find the set of rigid bonds, we use the following procedure. Starting with a ground state 
(solution X, of (P)), a violated bond is a living bond if and only if, for any E > 0 added to 
its weight C,i, we destroy the optimality of Xo. Otherwise this bond is a rigid bond (see 
figure 7). 

I oi ibt 

Figure 7. The wavy bonds indicate J,l = - 1. the straight bonds J,, = + 1. ( a )  One particular 
optimal solution. ( 6 )  Rigidity of the sample ( a ) .  The heavy bonds are rigid, the light bonds 
are living bands. 

This post-optimal analysis (it requires two new solutions for each bond, starting 
from Xo) can be done by a polynomial algorithm, as above. In fact, the algorithm of 
rigidity has O(N3) as complexity (Barahona 1980), where N, denotes the total number 
of spins. 

Details of this algorithm, as well as its complexity, are discussed in the following 
section. 

NB The extension of the rigidity analysis, as well as its algorithmic description (E 
rigidity) in the case Ji, E R, cannot be discussed here, and will be published elsewhere. 

3.6. Summary of the algorithm 

To our knowledge the Chinese postman algorithm is the first one able to give in a 
non-ambiguous way the set of rigid bonds in the frustration problem. We shall give here 
a summary of this algorithm, keeping a detailed discussion for the Appendix. 

Let Ei= C,, -8~slcv,cc=a(s,) yI be the reduced weight of an edge ( i ] ) ,  where C,, = lJ,,l. 
The ‘complementary slackness’ conditions can be stated as follows: 

(i) x g , > 0 j G = o ,  
(ii) yS > O J C ( I , ) E ~ - ~ ( ~ , x I l  = 1. 
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A given configuration of spins can be viewed as a matching between frustrated 
plaquettes. The chains of this matching yield a feasible solution of (P): xij  = 1 for edges 
belonging to this matching, and xi; = 0 otherwise. Thus any configuration of spins gives 
a feasible solution X. 

For simplicity, we give a simple procedure in two steps for the implementation of the 
algorithm. 

( a )  Starting solution X .  
(1) To each chain joining two plaquettes U and U, we add an edge ( U ,  v )  to the 

matching, having the weight of the chain. For instance, if Jii = fl ,  this weight is nothing 
other than the length of the chain. 

(2) A variable y{") is associated with each frustrated plaquette; this variable is equal 
to the chain weight, having U as extremity. 
All other contours S are absent, y ,  = 0. 

Thus we have a pair (X, Y) ,  satisfying (i) and (ii) and X is a feasible solution of (P). 

( 6 )  SolutionY: In this second step, (X, Y )  are changed: 
(1) so that X remains feasible; 
(2) to minimise I;(ij) IJijlxij and to bring Y feasible; 
(3) to maintain (i), (ii) satisfied. 
The algorithim alternatively leads to a pair of optimal solutions (X, Y ) .  

4. Numerical experimentation 

The numerical simulation is performed on a square lattice of Ising spins ai. The bonds 
between spins .Ti; are chosen as independent random variables from the probability law 

P(J; : i )=xs (J i j+J)+( l -X)s (J , ; -J ) .  

This is the well known random *J model of spin glasses. 
The purpose of the numerical simulation is to study the evolution of the structure of 

the ground states when the concentration x of negative bonds is increased. 
The samples are constructed first by assigning a specific random number to each 

bond, then assigning the k smallest values of the set of random numbers as negative 
bonds. By increasing the value of k, a family of samples is generated by adjunction of 
negative bonds -J to the previous sample. For each member of the family, a particular 
ground state is obtained as well as the map of rigid bonds for all ground states. Three 
different sizes are studied (10 x 10, 15 x 15, 20 x 20) with different concentrations of 
frustrated plaquettes; all the samples are characterised in table 1. The average 
concentration of frustrated plaquettes for an infinite sample is given by 

C,(x) = 4 [ ~ ( 1 - x ) ~  + x3(1 - x ) ]  

but for a finite sample, fluctuations around this mean value arise. Since the number of 
frustrated plaquettes must be fixed, the concentration of negative bonds is varied until 
the expected number is reached. Around C, = 0.5, x is chosen to be closest to 0.5. But 
it turns out that the best variable for building classes of samples is the number of 
unsatisfied bonds or even the energy (cf 0 5) rather than C, or x. 

The boundary conditions play a very important role in the analysis of results and will 
be detailed here. W e  have introduced joining edges in the vertical and horizontal rows 
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of the spin lattice which produce the standard toroidal mapping for a planar lattice. In 
the dual lattice of plaquettes, on the contrary, the two new cycles (‘superplaquettes’) 
which cannot be obtained by symmetrical difference of elementary frustrated plaquet- 
tes (Bieche et a1 1980) are ignored and the graph remains planar. These conditions are 
not the standard periodic conditions and will be called ‘pseudo-periodic conditions’. 
Another type of boundary condition used in an equivalent way is the pseudo- 
antiperiodic condition. In this case the joining edges for the toroidal mapping couple 
the spins of the last line or row (i o r j  = L) with the spins of an additional line or row (i or 
j = L + 1) obtained from those of the first line (i or j = 1) by reversing their orientation. 
This is an additional degree of freedom for the algorithm which takes the possibility of 
optimising the ground-state energy by changing the boundary conditions from pseudo- 
periodic to pseudo-antiperiodic or vice versa. 

The correct picture of these boundary conditions is the repeated cell scheme or the 
tesselation of the plane. For the pseudo-antiperiodic conditions the primitive cell is a 
larger square, the length of which is twice the length of the initial sample. These 
boundary conditions permit us to exhibit the magnetic wall structure for moderate 
values of x .  

5. Results 

For each sample of the set of 248 samples described in table 1 a ground state has been 
represented as well as the map of the rigid bonds. From the analysis of these maps, 
three main points emerge: 

(1) decrease of rigidity and fracturation, 
(2) non-standard percolation of rigid bonds, 
(3) random antiphase state and magnetic walls at moderate concentration. 

5.1 Rigidity and fracture lines 

Three typical situations are reported in figure 8: rigid sample @ ( a ) )  where the cluster of 
rigid bonds reaches the four sides (percolating cluster) at low concentration of negative 
bonds or frustrated plaquettes; once vertically fractured sample (8(6)) where the cluster 

0 0 0 0  

0 0  0 0 0 0  0 0 0  

. 0 . 0 0 0 0 0 0 0 0 0 0 0  

e e + o o e e o a - o o  

( a  1 
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( C )  

Figure 8. Fructururion by frusrrution. The samples exhibited in ( U ) ,  ( b )  and ( c )  contain 
20 x 20 Ising spins, the orientations of which are up for the open circles and down for the full 
circles. The periodic conditions are used and the 21st line or row repeats the first one. On 
the left of each figure one particular ground state is shown; the right hand parts exhibit the 
map of rigid bonds (straight segments) while the living bonds are omitted. On the left part, 
the strings joining the spins represent negative bonds. The frustrated plaquettes are 
represented by crosses in the centre of the plaquettes. The strings joining the plaquettes 
indicate the violated bonds. The three samples belong to the same family. They are 
generated by adding negative bonds to the initial sample. All these ground states have 
periodic boundary conditions. ( U )  Ferromagnetic ground slum. l%e concentration of 
negative bonds is x = 0.12. The rigid bonds constitute a large percolating cluster. The holes 
in the lattice indicate living bonds and loose spins. ( b )  Fracture line ( x  = 0.146). The cluster 
of rigid bonds does not percolate in the horizontal direction. In the corridor delimited by the 
rigid bonds a fracture line runs from the upper side to the bottom. On the left-hand side of 
the figure, the fracture line is built up from alternating strings-straight and b r o k e n i n  
equal number, in such a way that the spins in the right part of the sample can be reversed 
without any cost in energy. Therefore there are equal numbers of straight and broken 
bonds. ( c )  Complete fructurution ( x  = 0.5). The clusters of rigid bonds are of finite size. 
There are many fracture lines in the corridors between the clusters but they are not shown. 
Each cluster reveals strong fluctuations of magnetisation like ferromagnetic grains. No 
long-range magnetic correlation can survive in this situation. 
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of rigid bonds does not percolate in the horizontal direction; completely fractured 
sample represented in figure 8(c), where the cluster becomes of small size and does not 
percolate in any direction. 

The examples exhibited in figure 8 have been chosen on the basis of representativity 
of average trends: a fracturation of samples into small clusters appears when the 
concentration of negative bonds x or frustrated plaquettes C, increases. 

This fragmentation of an ‘infinite’ cluster into ‘finite’ clusters can be analysed 
quantitatively in terms of the fraction of rigid bonds in the largest cluster of rigid bonds 
F, as for the standard percolation problem. However it turns out that the variables x or 
C, lead to a large spreading out of the data, while the energy variable Eo or equivalently 
the number of unsatisfied bonds Nub gives better plots. The correspondence between E 
and Nub is E/NJ = Eo = -2(1- 4 )  where 4 = N,,b/N, and we use the monotonic curve 
Eo(x) of figure 8 from Bieche et a l ( l 9 8 0 )  to determine the corresponding x values. The 
function F ( 4 )  is plotted in figure 9 ;  each value is the fraction of rigid bonds in the largest 
cluster averaged over a class of samples characterised by a given Nub and size. The 
points show undoubtedly a decrease of F(q5) expressing the progressive fracturation of 
the samples. We expected a steeper decrease for larger size (a step function for infinite 
size at the critical threshold), but this is not observed because of the too small number of 
samples of sizes 15 x 15 and 20 x 20, respectively 56 and 32. By analogy with the 
numerical study of percolation (Roussenq et al 1976), we locate the threshold at 
F = 0.5, giving Nub = 0.26 and, from figure 10, xc  = 0.15. This numerical determination 
of xc  confirms the previous published value (Bieche et a1 1980). 

But the principal interest of this result is the disappearance of any long-range order 
above xc,  particularly at x = 0.5. As a matter of fact any correlation of staggered 
magnetisation ranging to infinity implies infinite rigid clusters; the fracturation of 
infinite clusters demonstrates therefore the finite range of the correlation above x c .  This 
study confirms the conclusions of Morgenstern and Binder (1980) at T = 0 K in two 
dimensions, but disagrees with the previous numerical study of Vannimenus et a1 
(1979) who found a bigger rigidity at x = 0.5. The discrepancy probably originates in 
their use of the Monte Carlo method of relaxation, which does not permit an exact 
average over all the ground states or even the low-energy excited states. 

An alternative but equivalent way to describe this transition of fragmentation into 
small clusters is the occurrence of fracture lines in the samples. Such a fracture line has 
been defined in great detail by Bieche et al(1980):  it corresponds to an alternating cycle 
of equal numbers of satisfied and unsatisfied bonds in such a way that the permutation of 
the set of bonds is possible at constant energy. 

Moreover, this line must cross the sample from one side to the opposite one. In 
other words, these lines cannot run in the rigid bonds of the clusters and generally 
surround them in the region of living bonds. Figure 8(b )  exhibits this kind of line which 
runs in the corridor between the clusters of rigid bonds. We have systematically looked 
for the existence of these lines in the set of samples and constructed the frequency of 
occurrence as a function of the energy variable. (The presence of this fracture line 
excludes the percolating cluster of rigid bonds and uice versa). This probability is 
plotted in figure 10 and shows an abrupt increase around the value Nub=O.25 
corresponding to xc= 0.15 hO.01. This value coincides as expected with the threshold 
of fragmentation observed in figure 9. 

Therefore the previous description of the fragmentation of the clusters of rigid 
bonds can also be obtained by inspection of the occurrence of fracture lines: its 
proliferation above xc= 0.15 coincides with the pulverisation in small and finite 
clusters. 
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Figure 9. For each size, the samples are regrouped into classes of ground-state energies in 
units of the number of unsatisfied bonds over the number of spins. There is a one-to-one 
correspondence between these values and the concentration of negative bonds in figure 7 of 
Bieche er a1 (1980). For instance, the value Nub/N. = 0.2 corresponds to x = 0.1 while 
NuJ,,/N, = 0.3 corresponds to x = 0.19. The strong decrease of the fraction of rigid bonds in 
the largest cluster by increasing N.b/N. or x points out the fracturation of the large cluster 
of rigid bonds at low x (figure 8(a)) intosmall finite clusters for x = 0.5 (figure 8(c)). There is 
large scattering of the data which prevents an analysis of the disappearing of rigidity in terms 
of finite-sue scaling. The chain curve is an averaging curve among the points. A, IO x 10 
(155 samples); 0, 15 x 15 (156 samples); 0, 20x20 (32 samples). 

5.2. Percolation of rigid bonds 

A glance at figure 8 reveals for an expert eye a strong geometrical difference between 
the percolating cluster of rigid bonds and the standard percolation of bonds in the 
square lattice. In particular, the compactness of the clusters is stronger here: there is an 
absence of dangling bonds since a given spin cannot stay rigid when it is surrounded by 
three loose spins. 

In view of pointing out this distinction, the probability of percolation (or frequency 
of percolating clusters in a given class) has been calculated for the subset of percolating 
clusters (figure 8(a)) as a function of the concentration of rigid bonds. The curve is 
represented in figure 11 and exhibits a threshold of percolation at CR = 0.7. (For an 
infinite sample the curve should be a step function.) 
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Energy ( N,,,J N, I 

RIpre 10. The total number of samples of sizes 10 x 10, 15 x 15 and 20 x 20 are regrouped 
into classes of ground-state energies in units of N,,/N,. The frequency of Occurrence of (at 
least) one fracture line for each class is represented by triangles (243 samples). The 
Occurrence of magnetic walls is looked for only in the rigid samples (number 173). The 
frequency of occurrence for the magnetic walls is represented by circles. The chain curves 
are average curves among the data. The thresholds defined by the value of N, , /N ,  
corresponding to 0.5 are identified as x ,  = 0.10 and x, = 0.15. 

This value is larger than the known threshold for the uncorrelated model of bond 
percolation on the square lattice, C, = 0.5. This difference is a direct consequence of 
the strong correlation of rigid bonds resulting from the presence of interacting spins at 
the origin of the rigidity. 

5.3. Random antiphase state and magnetic walls 

The rigid samples (samples with an ‘infinite’ cluster of rigid bonds) occur at low 
concentration 0 < x d 0.15, where the ferromagnetic ground state is expected. Actually 
a finer analysis of the samples shows a more subtle situation regarding the boundary 
conditions. We observe that the set of rigid samples ( x  d 0.15) can be divided into two 
classes: 

(1) a low-concentration class x s 0.10 where the pseudo-periodic conditions are 
almost always chosen by the algorithm (ferromagnetic ground state) ; 
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Figure 11. Probability of occurrence of a percolating cluster of rigid bonds as a function of 
the concentration of rigid bonds. 

(2) a moderate concentration class 0.10 d x d 0.15 where the pseudo-antiperiodic 
conditions are found more often. 

This observation is illustrated by the samples of figure 12, where the boundary 
condition passes from the periodic to the antiperiodic case when the concentration 
increases from the low-concentration regime into the moderate-concentration regime. 
For this situation there are two important implications from this antiperiodicity, 
occurrence of (at least) one magnetic wall, and zero magnetisation. In figure 12(6) a 
magnetic wall is drawn which runs through the sample. This line separates the domain 
of spins up from that of spins down, but is ‘macroscopic’ as a domain wall in the sense 
that it crosses the sample from one side to the opposite side. The same wall is drawn on 
the left side of figure 12(6) and its path runs partly on the loose bonds and partly on the 
rigid bonds of the ‘infinite’ cluster. The path of this line is unique in the infinite cluster 
because of rigidity but not unique in the domain of living bonds. Since the loose spins 
have no well defined directions, the path of this line is diffuse in this region of the 
sample. It is not so easy to realise the ‘macroscopic’ character of the magnetic wall from 
figure 12(6): a better visualisation of this situation appears in figure 13 where the 
repeated cell scheme is drawn. The antiperiodicity along the vertical axis imposes a 
double cell as primitive zone, and the representation of antiphase magnetic domains 
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"re 12. Magnetic wall. As figure 8 except the size of the samples: 15 x 15. ( a )  
Ferromagnetic ground state ( x  =0.135). The periodic boundary conditions are used on 
vertical and horizontal sides. ( b )  Random antiphase state ( x  = 0.17). The antiperiodic 
boundary conditions are used on the horizontal sides while the periodic ones exist on 
vertical sides. A magnetic wa11 is represented by dotted lines. It separates the spins in two 
domains: up and down orientations correspond to white and black circles. Here the 
magnetic wall runs across the percolating rigid cluster as well as the living bonds. The 
left-hand figure corresponds to one particular ground state: it is shown that this defect line is 
composed of satisfied negative bonds and unsatisfied positive bonds in unequal proportions. 

and the path of magnetic walls shows the structure of the ground states in the antiphase 
state. It is obvious that the magnetisation vanishes in this case since any strip of given 
orientation has its own replica with reversed magnetisation. (Among the 173 samples 
analysed in this way we have also observed two cases where, despite the periodicity of 
the boundaries, two magnetic walls ere present simultaneously. There, the magnetisa- 
tion was not strictly zero but very small.) In order to delimit this new phase (random 
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Figure 13. Random antiphase state. This figure is a repeated zone scheme of figure 12(6) 
which exhibits the macroscopic nature of the magnetic wall separating the domains of 
opposite spins. The magnetisation is, therefore, equal to zero. For the detailed legend, see 
figure 8. 

antiphase state) we have looked for the presence of magnetic walls in the set of rigid 
samples, i.e. samples possessing an 'infinite' cluster of rigid bonds. In figure 10 the 
points represent the frequency of occurrence of these defects among 173 samples. 
Since this curve must become a step function in the limit of an infinite sample, the 
threshold is taken at the value 0.5 for the frequency which corresponds to a fraction 
q5 =0.23. By using the relation between energy and this fraction E/NJ =EO = 
-2(1 -N,b/N,), theground-stateenergyisEo = -1.54, whichgivesx,= 0.1. Although 
the determination of this value is imprecise, its value is by construction less than 
xf = 0.15: xm < xf, because the random antiphase state is defined only for the rigid 
samples. 

6. Discussion and conclusions 

This study has two objectives: to generate exact ground states of the frustration model 
by an elaborate algorithm which overcomes the difficulties of the standard Monte Carlo 
method, and to analyse the structure of all the ground states. The first objective is 
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reached by the correspondence set up between this problem and that of the Chinese 
postman. The algorithm of Edmonds gives the possibility to find the minimum of the 
energy by constructing a dual problem where the minimum is reached by optimising 
successively the primal and then the dual problem. The concept of frustration or 
frustrated cycle turns out to be the most relevant variable for this problem: the 
relaxation towards the minimum can be described as a flip of packets of solidary spins of 
any size or shape. This algorithm is polynomial and varies as OW%) even for 
determining the map of rigid bonds, a property characteristic of all the ground states. 

The analysis of the samples leads to the existence of two types of defects: fracture 
lines and magnetic walls. If the first category has been already conjectured (Vanni- 
menus and Toulouse 1977, Bray et all977,1978, Bieche eta1 1980), the second one is 
revealed by this study. It is important to notice the distinction between these two lines 
defects. 

The fracture lines are the alternating cycles of an equal number of satisfied and 
unsatisfied bonds in such a way that the energy is invariant under a change of the 
matching. Nothing refers to the nature of these bonds-positive or negative /,,-nor to 
the orientations of the spins-up or down. The fracture line creeps along the corridor 
between the clusters of rigid bonds. It indicates a destruction of the macroscopic 
rigidity and implies that the magnetic correlation between spins belonging to two 
different clusters vanishes. From the observed occurrence of these fractures above 
xc  = 0.15 we conclude that no long-range correlation can persist above x c  = 0.15. 
Actually there is no long-range order of any type: the concentrated regime is a purely 
disordered phase or superparamagnetic phase (‘super’ because it subsists here a finite 
range for rigidity leading to clustering of spins). 

The magnetic wall appears in a quite different context: it is found when the samples 
are rigid, below xc=0.15, and it is constituted by an unequal number of satisfied 
negative bonds and unsatisfiedpositive bonds. There is no balance between satisfied and 
unsatisfied bonds: an alternation or pivot of the matching gives an increase of the 
energy. The energy of this defect is therefore negative in the range of the antiphase 
state while the energy of fracture lines vanishes above x c  = 0.15. Since this random 
antiphase state exists in the range of rigidity the magnetic correlation of the spins (in the 
rigid cluster) is equal to one. This extreme correlated state, however, must be analysed 
by local reference systems into each antiphase domain: it corresponds to a random 
staggered magnetic correlation in analogy with the case of the Mattis model. Then the 
random antiphase state is a genuine ordered state at T = 0 K for which the staggered 
correlation function is equal to 1. 

In summary, the morphology of ground states evolves in the following way: at very 
low concentration of negative bonds the ground states are ferromagnetic with a very 
small density of loose spins and a still smaller concentration of down spins. By 
increasing the concentration, a state is reached where the loose spins are still small and 
confined, while magnetic walls appear and break the ground states into antiphase 
domains. This is the random antiphase state appearing between 0 .10s  x d 0.15. 
Above x c  the domain of loose spins percolate and the fracture lines proliferate: the 
finite packets of solidary spins are also structured in antiphase domains, while around 
x = 0.5 these finite packets become very small and look like antiferromagnetic grains. 
Therefore, at T = 0 K, three distinct phases are encountered along the x axis: 0 < x 6 
0.10 a ferromagnetic phase, 0 . 1 0 ~ ~  ~ 0 . 1 5  the random antiphase state and x 20.15 
the superparamagnetic phase. 

All these results are obtained for the *J model at T = 0 K. The possible generalis- 
ation of these results to a continuous distribution P ( J )  like the gaussian model needs a 
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new definition of the rigidity. In a *J model the rigidity of bonds is a property common 
to all the ground states. In a continuous P ( J )  model there is only one ground state but a 
large density of low-energy excited states. In this case, a natural generalisation of the 
rigidity is the E rigidity, where the stability of one perfect matching is tested by changing 
the bond interaction J by a finite quantity E .  Indeed, for E -* 0 all the bonds are rigid but 
this number decreases by increasing E .  An interesting question would be to estimate E 

which would give approximatively the same clustering of spins as the x = 0.5 case. To 
answer this question we can use the comparative numerical study of these models by 
Morgenstern and Binder (1980). 

From an exact solution of the finite-size sample, they obtained numerically the 
entropy function for both the *J and gaussian P ( J )  models as a function of tempera- 
ture. The residual entropy at T = 0 K is finite for the iJ model: S/ke = 0.075. 

The temperature To for which S(To) = 0.075 in the gaussian P ( J )  model is approx- 
imately To = 0.3. This value could give an estimate E = 0.3 for which the analyses of 
ground-state structures are similar in both models. In the same way, the average 
interaction 1 - 2 x  would correspond to the first moment of a shifted gaussian dis- 
tribution P ( J ) .  We believe that most of these results for ground states of the iJ model 
are transposable for the low-energy or low-temperature states of the continuous P ( J )  
model. Thus the property of fragmentation into finite rigid clusters is likely to be a 
T = 0 K property of the continuous P(J)  model. In the same way, the random antiphase 
state discovered for the iJ model might be stable when P ( J )  becomes continuous. 
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Appendix 1. A primal algorithm for the Chinese postman’s problem 

A 1.1. Strategy 

The Chinese postman’s problem has been solved by Edmonds and Johnson (1973), 
using matching theory. They gave a description of the polyhedron of solutions using a 
dual algorithm. The inconvenience of using a dual algorithm is that only at the final step 
have we a solution that corresponds to a spin configuration. We have made a slight 
modification of their algorithm to obtain a primal algorithm. 

In this way, any transient solution corresponds to a spin configuration, and each step 
consists in reversing a spin cluster in order to decrease the total energy. 

To be more precise, for a given graph G = (V, E) a set of ‘odd nodes’ (T c V, with 
even cardinality and edges weights we 3 0, e E E, we will solve the following problem. 

(1) Minimise Z e s E  wcxe subject to 

x e = l  (mod2)if  EO, 
c e b ( i )  

xe E (0 , l )  for e E E .  
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For S E V, 6(S)  denotes the set of edges having exactly one end in S, and for U E V, we 
abbreviate S({o}) as S ( u ) .  We set Q = { S  c VI IS n gl is odd}, the family of ‘odd sets’ (IA/ 
denotes here the cardinality of set A ) .  

Following Edmonds and Johnson, (1) is equivalent to 
(2) minimise 2 = C e p E  w,x, subject to 

The dual of this linear program is 
(3) maximise U = CSEQ y ,  subject to 

If X is a feasible solution of (2 ) ,  and Y a feasible one of (3), X and Y are optimal 
solutions if and only if the following ‘complementary slackness’ conditions are satisfied 
(Dantzig 1962): 

( 5 )  if x e  2 0 then Z{siees(s)} Y ,  = we, 
(6) if y ,  > 0 then Zee8(s) x, = 1. 

The algorithm we will describe maintains a feasible solution X of (2) with Y satisfying 
(4), (9, (6), but initially it does not require the feasibility of (3). The algorithm will 
modify X and Y, until Y becomes feasible. 

A 1.2. Shrinking operation 

We define the operation of shrinking S E Q as replacing all nodes in S by a pseudonode 
P with S ( P ) = S ( S ) .  In fact, we connect all nodes adjacent to a node in S to the 
pseudonode P (see figure 14). 

Figure 14. Shrinking operation. 

Unshrinking S is the inverse operation. At any step of the algorithm, we will have a 
surface graph Gs obtained by shrinking some odd sets in G. 

The initial solution will be a pair (X,  Y )  where X is the characteristic vector of a set 
of simple chains joining the nodes of 0, with Y satisfying (4), (9, (6), and where 
F = { S E  QI Y, >0} is a nested family. The initial graph Gs is obtained from G by 
shrinking all sets in F. 

We let i4, = w, -X(Siees(S)) y ,  be the reduced weight of edge e. 
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A1.3. Algorithm 

Step 1. If Ge a 0 fob any e E E, stop. Otherwise, let a = (k, 1) be an edge such that 
Ge < 0. 

Step 2. Give the label ' - ' to the outer odd set S such that y, > 0 and one extremity of a 
belongs to S. Let k be this extremity. 

Apply the labelling subroutine. 

Step 3. If the other extremity 1 is labelled ' + ', perform a primal change (step 5 ) .  

Step 4. Set c1 = min{8,, I e = ( i j ) ,  i is labelled '+', j is not labelled and 
c2 = min{me:/2 I e = ( i j ) ,  i and j are in different pseudonodes labelled '+' and Kje 2 O}. 
e3  = min{y, I S is labelled ' - '}. 
We define min{h : h E 0)  = +a. Set w = min{cl, ~ 2 ,  c3} ,  and change Y as follows: 

Otherwise, perform a dual change (step 4). 
aO}. 

Y, -U  if S is labelled ' -' 
Y, + w if S is labelled ' + '* 

Y s + (  

If S = c3, unshrink pseudonodes P labelled '- ', so that y, = 0. 
Go to step 2. 

Step 5. There is a path of edges with reduced weight equal zero, form k to 1, that permits 
a primal change. Perform 

x a  + 1 ,  
x, t 1 - xe for each edge e in the path. 

In order that 8, becomes zero, execute the following procedure. While 8, 0, do: 
let P be a pseudonode such that a E S(P);  
set 6 = min{y, -8,}; 
perform y, t y, - 6; 
if y, = 0 unshrink the pseudonode P. 

A1.4. Labelling subroutine 

L1. If the pseudonode i has the label ' - ', make a list of all the nodes and pseudonodes 
connected to i with edges e such that xe = 1. Make with this list an odd set, shrink it and 
label it '+', (Figure 15(a)). 

L2. If the pseudonode i is labelled '+', scan edges in b ( i )  = { e  = ( i j ) E S ( I ) ) x ,  = 0 ,  
= 0). 
(i) If j is labelled '+', make a blossom (L3). 
(ii) If j is an unlabelled pseudonode, label it ' - ', apply (Ll) to j and continue to scan 

edges in b(I). 
(iii) Otherwise, make a list of all nodes and pseudonodes connected to j with edges e 

such that xe = 1; enter i in this list; delete the label of i ;  make an odd set with 
this list; shrink it and label it '+' (see figure 15(b) ) .  

L3. There are two different paths from k to label the pseudonode j (see figure 15(c)). 
Let k, VI,. . . , vn n l , .  . . , n,, j and k, v , ,  , . . , vn ml,. . . , mq, j be the two paths. Make 
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Figure 15. Labelling operations. 

S = { n l ,  nz ,  . . . , np, ml,  . . . , m,, U,, j }  an odd set. Delete the labels of elements of S,  
shrink it, and label it ‘+’. (See figure 15(d)). 

A l .  5. The initia [ solution 

Let U = { u l ,  . . . , u z k } ,  the set of odd nodes. An initialisation can be obtained by finding 
a path between u2p- l  and v Z p  for p = 1,. . . , k. Let lp  be the total weight of this path. 
Add an artificial edge between uzp- l  and oZp with weight l,, for p = 1, . . , k. Set to 1 
the variable x associated to artificial edges and to zero the other variables x .  Construct 
the odd sets { u l } ,  {uz} ,  . . . , { u ~ ~ - ~ } ,  with dual variables equal to Zl, . . . , Zp(m) respec- 
tively and shrink them. This initialisation represents the spin configuration obtained by 
frustrating bonds in the path between uzP-1 ,  and u z P  for p = 1, .  . . , k. 

A1.6. Discussion of the algorithm 

This algorithm gives the solution of the frustration problem for any given weight Jlj of 
edges in the planar graph G. Each step of the algorithm that modifies X or Y preserves 
the properties required to the initial solution. The dual changes are such that the 
reduced weights that are not negative do not become negative. For each negative 
reduced weight, at most O(lv1) applications of the labelling subroutine are required. Fr a 
planar graph, a bound to the amount of work of a labelling is an O(lv1) calculation, and 
there are at most O((v1) negative reduced weights. Then a bound to the amount of work 
of the algorithm is an O(lvI3) elementary calculation. For instance, in a square lattice, 
where V = L x L, the amount of work is O(L6). Thus, we have a polynomial algorithm 
for the frustration problem on planar graphs. The situation changes in a dramatic way if 
we relax this property. In fact, we can show (Barahona 1980) that the problem of 
frustration becomes NP-complete on 3D lattices. This ‘crossover’ occurs for L X L x 2 
lattices! It is not clear to the authors if this change of algorithmic complexity will have a 
physical signification. 



Morphology of ground states of 20 frustration model 699 

A l .  7. The rigidity 

We will describe a straightforward procedure to determine rigid bonds. We suppose 
that edge weights have integers greater than or equal to 1 (IJijI 2 1). 

After finishing the algorithm, we can label as rigid, edges with reduced weight 
strictly positive. Because of condition (4), their variable x will be zero in all the optimal 
solutions, For an edge e with x, = 0 and @e = 0 we subtract E = $from w, and we apply 
the algorithm. If no primal change is necessary, the edge is rigid. If a primal change is 
necessary, we label as living bonds all edges interfering in the primal change. For an 
edge e with xe = 0, we add y 2  to we, and we add $ to an odd set S, with ys > 0, and such 
that e E S(S), in order to verify (4). 

We apply the algorithm and the same analysis as above. The bound 0 ( ( u l 3 )  to the 
amount of work of this procedure applies as for the algorithm above. 

In the case where the edge weights are not integers, but real numbers, we must 
change the notion of rigidity, In fact, in such a case we have a band of low-energy 
excitation states. The notion of strict rigidity (see above) is to be replaced by that of E 

rigidity, where E > 0 is a given real number. This concept will be discussed elsewhere. 
To end this Appendix it is interesting to make some remarks about this algorithm. 
(a) First, the complexity of this algorithm is polynomial: 0 ( ( u l 3 ) .  
(b) The computational procedure maintains primal and dual aspects at all times. In 

this sense this algorithm can be called primaldual. 
(c) To our knowledge this is the only polynomial algorithm able to give the rigidity 

of the ground state in the frustration problem on a planar graph. 
(d) In contrast to the dual-primal algorithm, using the matching procedure directly 

(Bieche et a1 1980), the primal-dual algorithm starts with a given configuration of spins, 
and progresses by improving this solution. At first sight this procedure seems to be 
analogous in spirit to the relaxation techniques. However, in contrast to standard 
relaxation procedures, successive steps correspond here to flipping spin clusters of any 
shape, and any size. 

This is precisely the main reason for the failure (Rammal et a1 1979) of the Monte 
Carlo method which is unable to execute such transitions. 
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